欢迎访问三人行学院

2016高考数学复习方法之常见题型的答题技巧

作者:年轻的心跳 来源:未知 时间:2016-03-21 阅读: 字体: 在线投稿

  高考是人生道路上的一个转折点,也是改变命运的一战,如今的教育资源不平等化导致本身可以逆袭的你没有赢在人生的起跑线上,没有更好的站在自己所向往的大学校门口,三人行学院一直在想能不能尝试改变这种现状,让二三线城市的高考生也能接受一线城市的教育;每做一个决定,我们都会在内心这样问自己:“这样做能够帮助二三线城市的高考生吗?”我在原地,等你回来。

  高考数学常见题型的答题技巧

  立体几何篇

  高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。

  1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

  2、判定两个平面平行的方法:

  (1)根据定义--证明两平面没有公共点;

  (2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;

  (3)证明两平面同垂直于一条直线。

  3、两个平面平行的主要性质:

  (1)由定义知:“两平行平面没有公共点”。

  (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。

  (3)两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那么它们的交线平行“。

  (4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。

  (5)夹在两个平行平面间的平行线段相等。

  (6)经过平面外一点只有一个平面和已知平面平行。

  以上性质(2)、(3)、(5)、(6)在课文中虽未直接列为”性质定理“,但在解题过程中均可直接作为性质定理引用。

  解答题分步骤解决可多得分

  01、合理安排,保持清醒。

  数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。然后带齐用具,提前半小时到考场。

  02、通览全卷,摸透题情。

  刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。这样能提醒自己先易后难,也可防止漏做题。

  03、解答题规范有序。

  一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。

  对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言(文字语言、符号语言、图形语言)的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考阅卷是“分段评分”。

  比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。

  有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。

  数列问题篇

  数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。

  有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。

  探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。

  近几年来,高考关于数列方面的命题主要有以下三个方面;

  (1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。

  (2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。

  (3)数列的应用问题,其中主要是以增长率问题为主。

  试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

  1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。

  2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。

  进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

  3、培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.

  排列组合篇

  1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

  2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

  3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

  4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

  5.了解随机事件的发生存在着规律性和随机事件概率的意义。

  6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

  7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

  8.会计算事件在n次独立重复试验中恰好发生k次的概率。

  导数应用篇

  导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面:

  1、导数的常规问题:

  (1)刻画函数(比初等方法精确细微);

  (2)同几何中切线联系(导数方法可用于研究平面曲线的切线);

  (3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。

  2、关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

  3、导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

  01、导数概念的理解。

  02、利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。

  复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

  03、要能正确求导,必须做到以下两点:

  (1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

  (2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

高考

  2016高考数学二轮复习重点及策略

  通常情况下,高三数学需进行三轮复习,第一轮复习需以高考大纲为指导,以数学课本为基础,熟悉每个所学知识点,是一个唤起记忆的过程,要做到对知识点的学习不漏不缺。

  第一轮复习结束后,紧接着需进入第二轮复习阶段。在这一阶段是对第一阶段的巩固与强化,如果说第一阶段是知识点的积累,那么第二阶段就是对知识的灵活运用。二轮复习中更侧重于知识的融会贯通,各个知识点的衔接,二轮复习大约持续40天左右,那么如何在短短的时间内能够高质量得进行复习,这一点很重要。以下高中数学资深教师为同学们从三个方面给予同学们指导。

  一、时间安排:

  1:第一阶段为重点知识的强化与巩固阶段,时间为3月1日—3月27日。

  2:第二阶段是对于综合题型的解题方法与解题能力的训练,时间为3月28日—4月16日。

  二、内容侧重点安排:

  根据高考对知识点的考察我们可以归类为七大模块,并且针对每一个模块,老师为同学们一一详解:

  专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点

  函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。

  一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。

  不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。

  专题二:数列。以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。

  专题三:三角函数,平面向量,解三角形。三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。

  专题四:立体几何。立体几何中,三视图是每年必考点,主要出现在选择,填空题中。大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。

  另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。

  专题五:解析几何。直线与圆锥曲线的位置关系,动点轨迹的探讨,求定值,定点,最值这些为近年来考的热点问题。解析几何是考生所公认的难点,它的难点不是对题目无思路,不是不知道如何化解所给已知条件,难点在于如何巧妙地破解已知条件,如何巧妙地将复杂的运算量进行化简。当然这里边包含了一些常用方法,常用技巧,需要学生去记忆,体会。

  专题六:概率统计,算法,复数。算发与复数一般会出现在选择题中,难度较小,概率与统计问题着重考察学生的阅读能力和获取信息的能力,与实际生活关系密切,学生需学会能有效得提取信息,翻译信息。做到这一点时,题目也就不攻自破了。

  专题七:极坐标与参数方程,几何证明。这部分所考察的题目比较简单,主要出现在选择,填空题中,学生需要熟记公式。

  以上就是老师为同学们列举的二轮复习中应该注意的常考知识点。

 

  服务用户是三人行学院的最高追求。我们非常感谢那些给我们反馈信息的用户,还好有你们,我们才能更好的改进产品。

    标签:
    广告位
    广告位
    广告位